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ABSTRACT 

Basic concepts o f spectral analysis are applied to interpret interpo
lation, smoothing and parame tric transformation based on uniform sampling,as 
different types of discrete convolution. Spectral properties of interpola
tion are then discussed with main emphasis on its linear least squares 
version. This method is shown to be a c lose approximation to the interpola
tion with a low-pass filtering effect. An operator derived in a functional 
form performs direct least squares interpolation avoiding the usual inversion 
of the covariance matrix . Final l y, advantages of spectral analysis are 
demonstrated by examining the ac curacy and stability of the procedure . 

INTRODUCTION 

With the current expansion of dig ital terrain modelling and automated 
mapping it becomes increasingly important that the methods used i n the 
associated data compression, smoothing, resampling and transformation be as 
efficient as possible. The time c onsumption and reliability are of primary 
interest, but one should also ensure that the operations really perform 
their expecte d functions with no significant loss of information and with a 
minimum distortion of data quality. In order to understand the meaning of 
some functions it is useful to analyze their spectral properties . 

In general , spectral analysis can be applied both to continuous func
tions represented, e.g., b y analog signals , and to sampled functions given 
by a recorded stream of digital data col lected in discrete time or space 
intervals . This form of recording is typical of most photogrammetric appli
cations . Geometric information is collected by a regular one-dimensional 
sampling, such as an automated coordinate recording of profiles, or by sam
pling in regular two-dimensional rasters typical for more advanced photo
grammetric systems , such as the Ges talt Photo Mapper or analytical plotters. 

This present paper is an attempt to show spectral proper ties of elemen
tary interpolations and of the method of linear least squares interpolation 
(Kraus , 1972 , Moritz, 1973) . The scope of the analysis is limited to the 
ve r sion preserving a fit in regularly distributed data points, and the no is e 
filtering is disregarded . The findings are applicable also to more general 
configurations as long as an average point spacing is ensured . 

BASIC CONCEPTS 

A few basic concepts from the theory of Fourier transformation are 
needed for the analysis and will be briefly reviewed here , with reference to 
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details available in any of numerous suitable textbooks on the subject , e . g . 
in Bracewell (1965) . 

In the context of digital terrain modelling a function f(x) represen
ting a spatial distribution of elevations by positions x , corresponds to a 
function F(s) representing amplitudes of related spatial frequencies s. The 
relationship f (x) +-+ F (s) is defined in both directions by a pair of Fourier 
transforms . 

Convolution of two continuous functions is defined by h c*f or 
00 

h(x) = c(x)*f(x) J c (x-u)f (u) du (1) 
- 00 

where f(x) is a primary function, c(x) is a weighting or convolving function 
and h(x) is a resulting function . Accordingly , each value h(x) is an inte
gral functional of all values from c(u) and f(u) . Obviously, c(x) as a 
weighting function has a smoothing effect on f(x), which is proportional to 
the width of c(x) . 

Convolution theorem states that a convolution of two functions in one 
domain corresponds to a simple product of their transforms in the other 
domain , i . e . 

h = c*f+-+H = CF or h = cf+-+H = C*F . (2) 

The theorem has a great practical importance, because it enables one to 
avoid difficulties in certain computations or derivations by choosing a pos
sibly easier solution of equivalent relations in the other domain, provided 
that the Fourier transforms exist . In terms of symbols, if it holds 

and 

then an indirect , but technically simpler path 

a-+A-+B-+b 

is a substitute for a direct path a -+ b . 

(3) 

If f(x) is a band-limited function such that its transform F(s) is zero 
for all absolute frequencies exceeding a limit of s = 0 . 5,the Fourier trans
form of function f sampled at unit intervals (TIIf) is expressed by 

illf +--+ ill *F (4) 

Sampling function Til is basically a set of impulses 6 spaced at unit 
intervals and convolution TII*F represents function F(s) which is regularly 
replicated at unit intervals . Consequently, replication is a Fourier equi
valent to sampling . 

If function f(x) is not band-limited or the above bandwidth is exceeded 
the repli cation results in overlaps of individual transforms F and in false 
summations of their higher-frequency tails . This effect is known as alia
sing which distorts the spectral characteristic of the original function . 

DISCRETE CONVOLUTION 

The convolution of a sampled function yields a resulting function h and 
its spectrum H which are continuous 

h = c>~][f +--+ H C (TII*F) (5) 
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The analysis of the effect of convolution in the raster of resampled points 
TIIh = TII(c*TIIf) , as presented in the Appendix , leads to i mportant relations 

TIIh = (TIIc)*(TIIf) -f-7- TII*H = (TII*C) (TII*F) (6) 

A resampling process can be described by convo l ution of two sampled 
functions . The spectrum of a resampled function TIIh is a product of repli
cated spectra for functions c and f . This convolut i on deals only with dis
crete values at given rasters in all three functions involved . Thus , we may 
term i t di scre t e convolution. When considering all three functions as 
finite , the same set of numerical operations in the spatial domain can also 
be expressed in matrix notation by 

h = c f (7) 

with a graphical representation given in Fig . 1. Indi vidual row vectors in 
the band-limited matrix C are identical except for their mutual shift . The 
width of the matrix is limi ted by the given length of vector f . The resul
ting vector h stretches out beyond the length of f , thus adding non-zero 
tails to both its ends which taper off rather rapidly . This fact reflects 
the wel l -known boundary or edge effect typical for finite interpolations . 

ti c f 

Fig . 1 Matrix representation of discrete convolution 

INTERPOLATION 

Convolut i on performs as a general inter polation if it yields a fit 
TIIh = TIIf exp r essed by 

TIIf = (Tile)* (TIIf) -f-7- TII*F = (TII*C) (TII*F) 

f r om which one can derive conditions 

Tile = o -f-7- TII>'cC = 1 (8) 

to specify general interpolation by considering the well-known property of 
the a-function ( o ++ 1) . Any function with unity value in its origin and 
zeros for any integer x , acts as a general interpolator regardless of its 
form within the i nteger inter vals . Any other con volving function c intro
duces a smoothing effect and changes values also in the given raster of 
sampled points . 

I nterpo l ation wh i ch provides ful l agreement , h = f , exists only if 
funct i on f is band-limited . Cons i dering unit sampling interval the frequen
cies in funct i on f shou ld not exceed the limit of Is[ = 0 . 5 . In other words , 
the replicated spectrum F must be free of aliasing . The central unit sec
tion of the replicated spectrum is then identical wi th the original spectrum 
def i ned i n the r ange s(-0 . 5 , 0 . 5) . Since it follows from Equation (5) 

f = c*TIIf F = C (TII*F) 

the only function C which preserves values ofF up to [sl = 0 . 5 and sup
presses everything beyond , is the rectangle function IT(s) . Its equi valent 
in the spatial domain is the sine- function 

391. 



c (x) sinc(x) sin(nx)/nx -~ C(s) n (s) (9) 

LEAST SQUARES INTERPOLATION 

The least squares interpolation (LSI) represents a linear prediction 
with minimum variance . Its basic formulation in matrix notation is very 
simple 

(10) 

Here, C is a covariance vector, Q is a covariance matrix and 1 is a vector 
of observations . In this analysis the filtering capability of LSI is dis
regarded . Covariances are computed from a Gaussian function which is either 
determined from an autocorrelation analysis of given data , or a priori pre
scribed . Equation (10) can be interpreted in two different ways and accor
dingly treated as a 

· parametric transformation 
I 

li = ( ~1 Q-]1 g = (ll) 

where g is a vector of auxil ian· paran,<·: ·: s ·. )mputerl from a svstem of 
l inear equations , or as a 

• linear estimat i on or direct interpolation 
T T T -

h = a 1 a c Q · 
where a is an interpolator . 

Values of vectors 1 and g are referred to the same positions and are 
functionally related . Both forms of LS I are equi valent and yield identical 
results . 

Spectral Characteristic of LSI 

The parametric form (11) of LSI represents a convolution of deconvolved 
observations . In this paper , the same covariance function is supposed to be 
used in both phases . The direct interpolation form (12) operates with origi
nal observations and the interpolator a must be numerically computed for 
each individual point from the inverse of the covariance matrix . The analy
tical form of the function a(x) is unknown. We will show here that a suit
able spectral analysis helps to approximate this function . If this is 
successful the practical interpolation may proceed as direct convolution of 
sampled observations with a derived effective interpolator a(x), thus avoid
ing the need to invert the covariance matrix Q. 

In accordance with Equations (6) and (7) the system of linear equations 
to be solved for parameters g 

Qg = 1 (13a) 

has its equivalent form of a discrete colvolut i on which can be monitored in 
both the spatial and spectral domains 

IIlc*IIlg = ill£ +-+ (IIl*C) (IIl*G) = IIl*L (13b) 

The process of solution for vector g from Equation (13a) has equivalent 
operations in Equation (13b) and these are extremely simple in the frequency 
domain 

IIl*G = (IIl*L)/(III*C) (14) 

A complicated so ~ ution of linear> equat-::ons is r epr>e.sented bz' a simple div:_
sion of two r>ep~icat~d spectr>a . 
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Suppose that we have enough information on the spectral meaning of 
parameters g. The use of g or l in computing a new value 

T T 
h = c g = a l (15a) 

has their convolution equivalents in functions 

h = c*illg = a*IDQ. +-+ H = C(ill~<G) A (III*L) (15b) 

and with substitution for ill*G from Equation (14) we obtain 

H = C(ID*L)/(TII*C) 

Hence we _derive 

A= C/(TII*C) (16) 

which is the spectral characteristic or transfer function to the yet unknown 
effective interpolation function a(x) . lt is evident that A meets the cri
terion from Equation (8) to test the interpolation capability, since ill'''A = 
= (TII*C)/(ill*C) = 1 . 

A ::::::::A 

--+-~----"":~:=:::;:_;)'I..____.___.__ 5 

-1.0 -0 . 5 0 0.5 1 . 0 

Fig. 2 Spectral characteristic of LSI 

The form of the transfer function A depends on the definition of the 
Gaussian covariance function c and of its transform C 

c(x) = exp(-dx2 )/w ~· C(s) = exp(-Ds 2 ) , (17) 

where dD = n 2 and w2 = D/n = ~r /D. Figure 2 gives a graphical representation 
of C, of its replication TII*C and of the resulting transfer function A. 
Assuming that the value of C is sufficiently small at s = 1, the aliasing 
effect can be approximated from the summation of two shifted Gaussians in 
the range of s(O,l). The corresponding part of the replicated spectrum is 
denoted as C and analytically expressed by 

C exp(-Ds 2 ) + exp(-D(s-1) 2 ) 

exp(-Ds 2 )(1 + exp(D(2s-l))) 

In accordance with Equation (ln) we define A in the limited range of s by 

A = C/C 

and with substitutions for C and C we arrive at 
- - 1 
A(s) = (1 + exp(D(2s-l))) (18) 

A quick analysis yields values A(O)~l, A(0.5)=0 . 5 and A(l)~O which together 
with Fig. 2 show that the transfer function A is numerically very close to 
the rectangular function IT which is the spectral characteristic of the true 
interpolation, if the covariance function c is fairly wide and its transform 
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is then narrow with respect to the un i t interval . 

The least squa~es interpolation yields ~esults which a~e ve~y close to 
o~ practically identical zJith those f~om the t~ue inte~polation~ if D>>n o~ 
d <<n. 

Accuracy Limits of LSI 

Although there is a certain freedom in choosing the form of the covari
ance function c wi thout affecting the interpolation results i n an appreciable 
way , one should be careful not to exceed limits beyond which the interpola
tion becomes either less accurate or reliable . Common sense would prevent 
one from choosing function c too narrow with respect to the sampling inter
val, because this would generate artificial depressions between given points . 
Experience with LSI would also warn against extending the spread of the c
function too far , since in this instance the solution suffers from numerical 
i l l-conditioning of the covariance matrix to be inverted, even though it was 
reported by Lauer (1976) and Schut (1976) that up to a certain degree a loss 
of numerical stability was accompanied by a gain in interpolation accuracy . 
Spectral analysis can p r ovide explanations to this phenomenon . 

A variable spread of the covariance function is reflected in the fre
quency domain by different levels of spectral aliasing . A narrow spread of 
c(x) causes high aliasing , for C(s) is then too wide . For a narrow c(x) the 
convolution form h = c*TIIg is obviously limited to a serial product contain
ing a low number of terms and, consequently is not as accurate as a convolu
tion of continuous functions expressed by integrals. The error can be esti
mated from the difference between the integral and the serial product . If c 
as a weighting function is area-normalized then it holds t r ue 

00 

J c(x )dx = 1 and c (0) 1 
-oo 

because the area of a function is always equal to the value of its transform 
at s = 0 . A corresponding serial product for Tile is distorted by a value E 

which represents the relative inaccuracy of the serial product according to 

L c (n) = 1 + E 

n 
and C(O) = 1 + E • 

If C(s) 
Fig . 3 

exp(-Ds 2 ) as defined by Equation (17) , then with reference to 

E = 2C(l) = 2exp(-D) 

To ensure an n- digit accuracy we set a condition 

E < 

and hence 

-n O. SxlO 

D > n £nl0 + £n4 ~ 2 . 3n + 1.4 or 

The following table gives a few examples for values 
quirement of then- digit a c curacy of interpolation: 

n 2 3 8 

D > 6 8 20 

d < 1.6 1.2 0 . 5 

d < 9 . 87/D 

D and d meeting the re-
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I 
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, ' 

' ' ' ' 
I ' 

0 -1.0 - 0 . 5 0 0 . 5 1.0 

Fig . 3 Sampled covariance function and its al i ased spectrum 

The problem of numerical stabil i ty of the covariance matrix is reflec
ted in the spectral domai n by Equation (14) whi~h contains a critical divi
sion by lli*C or , within the range of s(O ,l ) by C. With reference to Fig . 3 
and to Equation (17) the numerical va l ues in 1/C range between 1 and 1/6 = 
= 2exp(D/4) . The corresponding range of decimal exponents extends from 0 to 
log(l/6) ~ D/9 . 2 = 1 . 1/d . Because of the inherent reversal of qual i ties in 
a function and i ts Fourier equivalent , a tall and narrow function has a flat 
and wide transform . An excessive range of numerical values within lli*C in 
the frequency domai n signifies a monotonous character of related values with
in Tile in the spat i al domain and , consequent l y , a rather ill-conditioned 
matrix Q to be inverted . Should one still succeed with the inversion , the 
lack of al i asing makes the resulting interpolation very accurate and prac
tically identical with the ideal sine-interpolation . 

Di rect Least Squares Interpol ator 

Equations (16) and (18) show the general character and form of the 
transfer function A typical for LSI. However , this form is not suitable to 
derive its t r ansform a(x), which could be used as a functional operator for 
a direct interpolation expressed by Equations (12) and (15b) . We should 
attempt to find an alternate formulation for A whose transform can be derived 
more easily . 

Function A in Fig . 2 has an appearance of a blurred function TI as if 
the idea l TI were convolved with an auxiliary , strongly peaked and narrow 
Gaussian E which is area-normalized 

A = E* Il (19) 

This is illustrated in Fig . 4 . As a Gaussian , function E conforms to the 
definiti on of a probability density function ~ ' i . e . E = ~' and the left 
part of TI is , of course , coincident with a unit step function H, as shown i n 
Fig . 5 . The shape of the transfer function as expressed in its left half AL 
by a modification of Equation (18) 

AL(s) = (1 + exp(- D(2s+l)))-l (18a) 

can be modelled by a cumulative distribution function ~ obtained from a pro
g r essive summation of ~ ' i . e . by a convolut i on of ~ and H 

AL ~ ~ = ~*H (20) 

In turn , a derivati ve of ~ inhe r ently defines the val ue of ~ 

¢(s)= ~' (s) 
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A 
~I (Q) 

E n cp 
HriY----~ 

Fig. 4 Blurred function l! Fig . 5 Distribution function ¢ 

To achieve a close ¢-to-AL fit we specify that ¢ assumes the slope of 
AL in its centre point . By definition, this determines the peak value for ¢ 

¢ (0) = ¢ 1 (0) = A~(-0.5) 

From Equation (l8a) we develop 
I - 2 

AL(s) = 2D exp(-D(2s+l)) (l+exp(-D(2s+l))) 

and derive 

A~ (- 0 • 5 ) = 2 D ( 1 + 1 ) -
2 = D I 2 

Since ¢ is area-normalized and we know also its peak value ¢(0) = D/2, it is 
possible to derive its analytical form in terms of the covariance spectrum 
C. The same form also represents the auxiliary blurring function E 

cp(s) = E(s) = !D exp(-*1rD 2 s 2 ) (21) 

From Equation (19) we are finally able to determine the interpolation opera
tor a as an analytical function 

a(x) = e(x)sinc(x) +---'- A(s) = E(s):I<JT(s) (22) 

where 

Following our well established path (3) 

c - * e _ c --r C - ->- E -r e 

we also review the results of the derivations using value d from the original 
covariance function as an independent parameter 

c(x) = ld/n exp(-dx2 ) +-+ C(s) 

(jl (0) = iT
2 /2d 

e(x) = exp(-4d 2 x 2 /n3) +- r E(s) 

(23) 

The effective LS interpolator a is derived by an auxiliary Gaussian at
tenuation of the sine-function . Its spectral response A closely approximates 
the rectangle function TI . The degree of attenuation and smooth i ng is affec
ted by the choice of the original cova riance function c or of its transform 
C. This way, one can control the performance of LSI as suited to particular 
conditions of the application . More information on this and on numerical 
aspects of the direct LSI was presented by Kratky (1978). 

CONCLUSIONS 

Spectral analysis helps to understand the function and to estimate the 
effectiveness of various interpolation and smoothing methods . For regular 
sampling patterns , very common in photogramrnetry , the formulation of dis
crete convolution is an analytical equivalent to linear transformations and 
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systems of linear equations to be solved for parameters , as typical in LSI 
and other methods . The method of LSI examined with the use of Fourier trans
forms shows a spectr al r esponse which can a l so be achi eved by means of a 
d i rect interpol ator expressed by an analyt i cal function . Aspects of accuracy 
and stability of LSI are easy to understand and interpret from the analysis 
of spectral and spatial relations . 
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APPENDIX 

Resampling by Discrete Convolution 

If F denotes the central unit section of an aliased spectrum IIT*F then 
obviously 

IIT*F = IIT*F S (F) (A) 

where S(F) represents a set of adjacent identical sections F composing the 
fu l l repl i cated spectrum ill*F . Similarly , the original spectrum F can also 
be partitioned into a set of unit sections Fi which are not ident i cal 

i = ... - 2, -1 , 0 , 1, 2 ... (B) 

These sections Fi, shifted to a single unit interval obviously define sec
tion F by summation 

F =IF. (C) 
. l 
l 

Spectrum H = C(IIT*F) can be modified by using the above S- definit i ons yield
ing S(Hi) = S(Ci)S(F) = S(CiF) and hence 

Hi = CiF (D) 

To derive a repli cated spectrum ill*H one should consider the definition from 
Equation (C) first and then subst i tute for Hi from Equation (D) so that 

H = IHi = I<ciF) = <I ci)F cF 
i i i 

Since IIT*H S(H) S(C)S(F) , one arr ives at 

I IIT*H = (IIT*C) (IIT*F) (E) 
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